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Abstract—As power electronics permeate critical 
infrastructure in modern society, more precise and effective 
diagnostic methods are required to improve system reliability as 
well as reduce maintenance costs and unexpected failures. 
Prognostic and Health Management (PHM) systems that analyze 
changes in the electromagnetic spectrum (E-PHM) of a circuit can 
be implemented to determine the health of the equipment under 
test. This research demonstrates the use of E-PHM techniques to 
measure the junction temperature of a silicon carbide (SiC) 
MOSFET. The results show the feasibility of training machine 
learning algorithms to recognize this relationship and determine 
the junction temperature within 10 °C. This is accomplished, in 
situ, without interruption of device operation and without altering 
the system’s performance. 

Keywords—electromagnetic interference, prognostic and health 
management, E-PHM, machine learning, support vector machine, 
junction temperature measurements. 

I. INTRODUCTION 

It is increasingly necessary to improve the reliability of 
power electronics because they are now found in numerous 
safety-critical operations wherein hardware failure yields 
serious consequences [1], [2]. Within high-power applications, 
like electrified transportation, power electronics drive 
substantial loads at high voltages for sustained periods of time 
under a wide range of environmental stresses, making them 
liable for failure [3]. High costs are associated with preventing 
failure, accentuated by a lack of device monitoring tools. For 
example, the airline industry resorts to ambiguous testing and 
preventative maintenance for their aircraft due to the absence of 
accurate diagnostic procedures; this contributes to a 10% to 20% 
rise in maintenance costs [4]. Improvements to monitoring 
systems can help mitigate these issues.  

Prognostic and Health Management (PHM) systems are real-
time analysis hardware that draw on background knowledge of 
a device’s operational characteristics and failure mechanisms to 
ascertain the health of the device. This area of research has 
grown considerably with respect to the field of power electronics 
since this hardware is becoming ubiquitous to many mission 
critical applications. While several variants of PHM methods 
have been explored for power electronics, the use of 
electromagnetic interference (EMI) as a conditional monitoring 
tool, referred to as E-PHM, has received limited attention [3] - 

[6] despite its utility as a sensitive and non-invasive insight into 
circuit operation. 

Effective implementation of PHM techniques depends on 
the complex task of linking device behavior to internal 
characteristics indicative of incipient device failure. Typically, 
power device testing and datasheets lack sufficient detail to 
effectively model the relationship between internal operation 
and external behavior; for example, device behavior is often 
characterized at only two different temperatures, omitting 
details of the complex nonlinear relationship and the full extent 
of its effects on device operation. Semiconductor operating 
characteristics are sensitive to changes in temperature, altering 
several properties and behaviors. Analysis of temperature 
dependent characteristics by several other researchers concludes 
that on-state resistance (RDS(on)) and switching speed (both turn 
on and turn off) are all altered according to the device 
temperature [7]-[9]. The latter is due to changes in the threshold 
voltage and mobility [9]. These temperature-dependent changes 
in circuit behavior are reflected in the electromagnetic (EM) 
spectrum of the circuit [10]. This research quantifies the 
accuracy of using changes in conducted EMI to determine 
device junction temperature of a switching device via the use of 
support vector machines (SVMs). 

This paper discusses the topology used to generate EMI and 
the measurement techniques used to gather data. Experimental 
data is provided, with key features in the EMI emphasized. 
Following these results, the implementation of the SVM 
learning algorithms is discussed. The paper then delivers final 
conclusions and discussions of future work to be conducted. 

II. BACKGROUND 

Datasheets for most power devices include only basic 
information concerning how temperature affects different 
aspects of operational characteristics. In the context of this 
research, characteristics such as switching speed and RDS(on) are 
of key importance as their effects on EMI are likely to 
distinguish noise measurements between different device 
junction temperatures. Several studies have been released which 
provide a closer analysis of temperature dependent SiC 
MOSFET characteristics. Characterization of devices is 
typically accomplished in these studies through the development 
of a converter topology and a series of double pulse tests (DPT), 
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each topology analyzed with the switching device heated to 
various temperatures. Furthermore, these studies characterize 
multiple semiconductor materials, including Si and SiC, to 
compare the relative performance of each material at several 
temperature ranges. The results of these studies indicate that 
multiple device characteristics are liable for alteration when 
subjected to different temperature, even during device operation. 
Exploitation of these distinguishing characteristics - which 
include altered switching losses, switching speeds, and adjusted 
gate voltage curves – allows for a distinction in the EMI 
signature of these devices. This section seeks to correlate the 
results of these past analyses to an expected shift in the EMI 
spectrum of a SiC device. 

A. Static Characterization 

Analysis by past researchers has concluded through both 
static and dynamic characterization of semiconductor devices 
that temperature can significantly impact a device’s function. [9] 
features a plot of threshold voltage versus temperature 
indicating a clear negative temperature coefficient across all 
tested SiC devices, concluding that an increase in device 
temperature alters the conditions necessary for turn-on in these 
MOSFETs. Subsequent analysis of these devices indicates a 
decisive shift in transconductance when comparing device 
operation at 25 � when compared with 200 �. Such a dramatic 
shift in transconductance implies a reduced turn-on time, 
potentially indicating a proportional shift in EMI with respect to 
temperature. 

Further evidence suggests that switching speed is affected by 
junction temperature: drain voltage and drain current slew rates 
were shown to increase with temperature [7]. Changes in 
switching characteristics can be observed in the circuit’s EMI as 
well. Xiang et al. [2] determined a 15 � change in case 
temperature yielded a 5.6 % change in fifth harmonic currents 
as a result of temperature-dependent switching speeds, proving 
the efficacy of corroborating EMI to device temperature. 

Finally, a relationship between RDS(on) and device junction 
temperature is explored at length by many researchers, both 
through experimentation and simulation. LTSpice device 
simulations based on the VDMOS model were developed to 
incorporate realistic parasitic effects and temperature dependent 
models with the goal of estimating changes to current transient 
properties [12]. These simulations yielded a positive 
temperature coefficient for RDS(on). Subsequent experiments by 
[13] indicated an increase in RDS(on) coupled with a decrease in 
threshold voltage. These results are supported by [9],  this time 
applied to a wide selection of SiC and Si devices for comparison. 
In their test setup, RDS(on) for multiple SiC and Si devices was 
extracted from I-V curves at various temperatures and 
multiplied by the respective die area to achieve the device’s 
specific on resistance. RDS(on) for all devices followed a similar 
gradual increase as the temperature was raised. A comparison of 
Si MOSFETs with their SiC counterparts reveals a more 
substantial increase in RDS(on) for the Si devices (with an increase 
of over 100%), though both types of devices still revealed a 
noteworthy rise. An increase in device temperature gradually 
diminishes the current gain of a MOSFET (indicating increased 
RDS(on)), as elevated temperature raises drift region resistance [8]. 
These results are corroborated by [10] through similar 

experimentation with another set of semiconductor devices. 
Again, both Si and SiC devices exhibit a consistently increasing 
resistance as temperature rises, with Si subject to far greater 
losses. 

Increased RDS(on) in a switch will naturally lead to increases 
in conductive energy losses as the device heats up, confirming 
the theory that energy losses can reliably predict device 
temperature during device operation. Qi et al. [10] divides the 
total RDS(on) into channel resistance (RCH) and all remaining 
components (RS) and attributes the temperature specifically to 
shifts in RCH. At higher temperatures, RS dominates the RDS(on) 
due to bulk electron mobility. In contrast, RS diminishes at low 
temperatures as bulk electron mobility subsequently increases. 
Additionally, RCH begins to rise as the device cools 
predominantly according to an increase in trapped electrons 
(among other less prevalent factors) [11].  Chen et. al. [6] 
reaches the same conclusion, determining that the shifts in I-V 
curves as temperature increases reflects a proportional shift in 
energy losses by each device. 

B. Dynamic Characterization 

Switching characterization of the circuits was accomplished 
using a standard double pulse test. A constant ambient 
temperature is maintained while a heating apparatus (e.g. a 
hotplate or a heat source mounted on the device) actuates the 
temperature of the devices as double pulse tests are conducted. 

DPT tests conclude that a substantial increase in switching 
loss occurs as device temperature increases [1], [7], [9], [11]. As 
predicted, Si device losses far exceed that of the SiC devices, 
again demonstrating the efficacy of these improved SiC devices. 
Nevertheless, the switching losses are still observable on an 
easily measurable scale, with turn-off energy (EOFF) increasing 
with respect to temperature and turn-on energy (EON) 
decreasing. These changes are a consequence of the temperature 
dependent switching speeds discussed in the previous section.  
Plots in these papers repeatedly show a decrease in turn-on time, 
revealing the source of the reduction in EON. Likewise, [10] 
depicts a clearly observable increase in turn-off time as 
temperature increases, corroborating the increase in EOFF. 

C. Machine Learning 

 The development of machine learning algorithms has 
facilitated the rise of efficient and versatile data processing tools 
that can be implemented with relative ease in many industrial 
and scholarly applications. Support vector machine (SVM) 
modeling is predicated on the establishment of decision planes 
to categorize input data into predefined classes. This decision 
plane is represented mathematically as a hyperplane, wherein 
data from a given input vector is mapped to a “feature space” via 
a kernel function designated by the user. Once the input data 
item (known as a “feature”), has been mapped into the feature 
space, the SVM creates an optimal decision line within the 
hyperplane that separates data into each respective class [14]. 

 The number of classes and characteristics of each class are 
defined according to a training model introduced to the machine 
prior to data processing. This training model is comprised of 
labeled data samples used by the SVM algorithm to create the 
hyperplane responsible for separating input data. Creation of the 
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hyperplane is carried out by a desired kernel function, most 
popularly the radial basis function (RBF). This function is 
described as follows: 

 , = | |  (1) 

wherein x describes the class, xi represents a data set, σ indicates 
the standard deviation of the data set, and γ acts as a scalar. 

 Having established the classifier according to the training 
model, an unsupervised input data vector is compared to the 
hyperplane. This comparison is described according to the 
following equation: 

 = ∑ , +  (2) 

wherein ai describes a scaling factor, yi represents the input 
vector, and b is the error offset constant. This process is repeated 
for each member of the input vector. 

 In the context of this experiment, each class described in the 
training model will be representative of a predetermined 
temperature at which point the semiconductor device will be 
characterized. Additionally, the results of the following 
experiment will utilize half of the experimental data as a 
supervised training model for the SVM, with the other half 
aggregated according to the resultant classifier constructed by 
the training data. 

D. Test Setup 

 The experimental setup is shown in Fig. 1. A buck converter 
with a 4.4 mH inductor and a 1.02 mF load capacitor drives a 
150 Ω load. The SiC MOSFETs (C3M0065090D) are switched 
at 20 kHz with a 50% duty cycle. A chassis mounted power 
resistor is attached to the MOSFET heat sink and used to more 
effectively control the semiconductor device temperature. Two 
Line Impedance Stabilization Networks (LISN) monitor EMI in 
the circuit, feeding frequency data to an MDO3104 
oscilloscope/spectrum analyzer. 

The drain to source voltage (VDS) of each MOSFET and the 
voltage at the LISN’s measurement terminal were observed to 
quantify changes in switching speed as junction temperature 

increased. Fig. 2 depicts the turn off event of the upper device 
for four different case temperatures. The switching waveforms 
at higher temperatures are shown to lead the waveform of lower 
temperatures, illustrating a reduction in turn-off time as 
temperature increases. Furthermore, the LISN’s voltage shows 
a higher peak voltage results for the higher operating 
temperatures. This indicates that the conducted EMI should 
increase with temperature around the frequencies related to the 
dv/dt of the device.  

Tests were conducted to confirm that the EMI of the circuit 
reflected these altered switching characteristics. Data collection 
was organized into three types of noise measurements across 
two frequency ranges. Common mode noise (CM), differential 
mode noise (DM), and total noise (TN) were measured at room 
temperature (~22 �), 30 �, in ten-degree Celsius increments 
until 60 �. At each temperature, the noise spectrum was 
measured first between 100 kHz and 1 MHz (LF), then at 1 MHz 
to 40 MHz (HF).  

III. ANALYSIS 

The test results for total noise (TN) E-PHM measurements 
are shown in Fig. 3 - 4. The buck converter operated with an 
input voltage of 270 V, an output voltage of 135 V, and a 
switching frequency of 20 kHz, yielding a total output power of 
~135 W. The plots shown were generated in MATLAB from the 
mean noise measured in each set of tests. For brevity, 
measurements are only shown for total noise, though common 
mode and differential mode noise similarly exhibit 
distinguishing behavior.  

  
 (a)  (b) 
Fig 1. (a) LISNs used for noise measurement and (b) buck converter with a 

heating element for the experiments. 

           
 (a)  (b) 

Fig. 2. (a) Drain-source voltage of SiC device measured at different temperatures and (b) LISN voltage versus device during device turn-off window. 
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 Immediately, one can observe that the HF measurements 
yielded results with greater differentiation between temperature 
tests than the low frequency. Test results in the lower frequency 
range of 1 kHz to 100 kHz yielded few frequencies in which an 
outstanding distinction could be made from noise measurements 
taken at different temperatures (Fig. 3). However, in the higher 
test frequency range of 1 MHz to 40 MHz, the frequency 
spectrum 25 MHz to 38 MHz yields a significant stratification 
between the various temperatures, demonstrating the feasibility 
for determining MOSFET junction temperature using the 
frequency spectrum of the circuit’s EMI (Fig. 5).   

An SVM machine learning model classified the measured 
data and determined the junction temperature of the MOSFET. 
Five classes representing each tested temperature were defined 
for this experiment. A training model was developed using 25 

data samples gathered at each MOSFET junction temperature 
per noise spectrum (TN, CM, & DM). An additional 25 data sets 
at each temperature were then classified according to the 
developed model.  

Tables I and II depict the resulting confusion matrices of the 
SVM model using total noise EMI measurements. Across all 
noise spectrums, the model was able to reliably classify junction 
temperature with 100% accuracy. This result indicates that a 
single EMI measurement, the total noise, can be used to 
implement this approach. 

To verify these results, a second iteration of the experiment 
was executed under the same test conditions, testing at the 
higher frequency range only (1 MHz to 40 MHz). This 
subsequent test produced identical results to the first. 

       
Fig 4. (a) HF spectrum of TN noise at each temperature and (b) Zoomed view of HF TN exhibiting higher noise at evaluated temperatures. 

 
Fig. 3. (a) LF total noise (TN) spectrum of buck converter topology and (b) Zoomed view of LF TN exhibiting higher harmonics at between tested temps.  
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To affirm the efficacy of the SVM approach, the training 
model of the first experiment was used to classify all 50 sets of 
data gathered during the second experiment. The resulting 
confusion matrices can be seen in Tables III to V. As shown in 
the table, the SVM maintains its high reliability even when 
trained with a different generation of data from the same 
experiment setup. The TN model achieved 100% accuracy while 
CM and DM produced only one error each for a total of 99.6% 
accuracy. 

IV. CONCLUSION 

This paper analyzes the temperature dependent 
characteristics of semiconductor devices to demonstrate the 
efficacy of online, real-time analysis of device operation suitable 
for high temperature safety critical applications. The results 
demonstrate altered device operational characteristics that can 
be consistently reproduced in the converter. Additionally, an 
SVM model was able to reliably predict the MOSFET junction 
temperature utilizing the distinguishing features in the spectrum, 
confirming that E-PHM is feasible as an effective monitoring 
tool. While this original method features the implementation of 

an SVM algorithm to characterize device operation, further 
refining the machine learning protocol could produce a more 
accurate estimation of device temperature with greater 
resolution. Rather than a classification system, for example, a 
regression model or artificial neural network would permit the 
precise approximation of device temperature without relying on 
the training of a finite selection of classes. 

The systems outlined in this paper were performed at voltage 
levels and device temperatures more than capable of reflecting 
the environment of modern electric transportation, allowing for 
a cost-effective and simple solution for prognostic analysis of 
device health in these industries. 
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